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BLOCK REFLECTORS: THEORY AND COMPUTATION'

ROBERT SCHREIBERt AND BERESFORD PARLETTt

Abstract. A block reflector is an orthogonal, symmetric matrix that reverses a
subspace whose dimension may be greater than one. We shall develop the properties
of block reflectors and give some algorithms for computing a block reflector that

introduces a block of zeros into a matrix. We consider the compact representation

of block reflectors, some applications, and their use in parallel computers.

1. Introduction. Block reflectors are orthogonal, symmetric matrices with

possibly more than ont negative eigenvalue. They are a natural generalization of the
elementary reflectors (also known as Householder transformations) that are widely

used in matrix computation. Block reflectors have similar uses.

We shall develop a theory of block reflectors and their computation. We also

discuss some applications of block reflectors, give some numerical results showing
the stability of our algorithm, and show how this algorithm is well matched to the
capabilities of some new, fast scientific computers.

Block reflectors are not new. Bronlund and Johnsen gave a method for orthog-
onal reduction to block upper triangular form, but the orthogonal transformations

were nonsymmetric [2]. Dietrich derived the block reflector as we discuss it here,

gave a stable method for computing it, and showed how it may be used for reduc-
tion to block upper triangular form [4]. Kaufman has considered the use of block

reflectors for block triangularization of a sparse matrix [8].

In this paper, we make the following contributions. First, we derive a complete
theory of block reflectors, clearly showing the parallels between the block and the

point theory. Our presentation is considerably more direct than that found in 14].
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In addition to existence, we also answer the question of the uniqueness of the
block reflector, giving it in its most geineral form. Then we present a new view of
the theory; our vantage point is the operator angle between two subspaces. This
more clearly reveals the structure of the block reflector used to map between two
subspaces. and also leads to new algorithms.

After providing two applications, we show how to construct a block reflector
that introduces a zero block into a matrix. Four algorithms are presented. One is a
new version of Dietrich's stable method. The role played by the polar decomposition
of a matrix in this method is revealed. A second, related algorithm can be used
to construct any of the several block reflectors that map between a given pair of
subspaces; Dietrich's method can be used to construct only one of these. Two new
algorithms based on the operator angle are also given. Finally, the efficiency of
these methods on modern parallel computers is examined. A numerical experiment
illustrates their accuracy, even for very badly conditioned matrices.

Bischof and Van Loan have pursued a somewhat different approach [1]. They
develop a representation for the product of several elementary reflectors of the
form I - WY, where W and Y are rectangular matrices. With this representation,
the usual orthogonal reduction to triangular form can be organized so that it is
dominated by matrix multiplications, an important virtue, as we explain below.

For any matrix X, R(X) denotes the range of X. For any subspace Y, Y'
denotes the orthogonal complement of Y.

2. Block reflectors: Theory.

2.1. Definition. Given any Z E R""', m > n, "the reflector that reverses
the range of Z" is given by

H = H(Z) := I - ZWZt

where

W = 2(Z'Z)+ E R""

is the (symmetric) pseudo-inverse of I(ZtZ). (See 16, p. 139] for a fuller description
of the pseudo-inverse.) Thus

ZWZ' = 2Pz

where Pz is the orthogonal projector on R(Z).

When n = 1, H is an elementary reflector or Householder transformation.
When ZAZ is invertible, W = (Z'Z)- 1. Note that if Z = 0, then W = 0 and
H(O) = I. Also, H(Z)Z = -Z. (See Lemma 1 for proof.)

This choice of W makes H orthogonal as well as symmetric. Hence, H2 = I,
the reflector property.

It is also easy to verify that if R(Z) = R(Z), then H(Z) = H(ZI). Thus, for
example, H(ZT) = H(Z) for any invertible T, and H(ZW) = H(Z) as well.
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Since H is orthogonal and symmetric, its eigenvalues are 1 and -1. The mul-
tiplicity of -1 is equal to the dimension of the space reversed by H; this in turn is
equal to the rank of Z.

2.2. Essential properties. Every m x m orthogonal reflector H induces
a decomposition of R ' into the direct sum of two perpendicular subspaces; one
subspace is H invariant and the other is reversed by H. The following lemma states
that for the reflector H(Z), the reversed subspace is R(Z).

LEMMA 1. Let Z E RnX". For all z E R(Z),

(Ia) H(Z)z = -z

and for all y E R(Z)-" ,

(Ib) H(Z)y =y.

Proof. We require the fact that, for any matrix B,

B(Bt B)+Bt B = B,

which is easy to prove using the singular value decomposition (SVD) of B. (See [6,
pp. 16-20 i for more information on the SVD.) Now let z E R(Z). Then there exists
z, such that z = Zx. Using the fact above and the definition of H(Z),

H(Z)z = Zz - ZWZ'Zz

= Zz - 2Zz
"- Z

so that (la) is proved. Property (ib) comes from applying H(Z) to y and noting
that Zty =0. QED

2.3. The standard task. LetE= (E) ERMXI, with m> n, and El

square. We seek a block reflector H such that

HE=F (F)

with F square. We now give conditions on F that are necessary and sufficient for
the existence of H:

(2a) ISOMETRY PROPERTY: FF = EH t HE = E'E

and

(2b) SYMMETRY PROPERTY: E F = E'HE = symmetric.

3



Define the associated matrices:

(3a) D: - E
[F -FEj]

- E2

and

(3b) S :=F+ E.

(D is for "difference," S is for "sum.")

An important consequence of the conditions (2) is this:

LEMMA 2. If F satisfies (2), then

D'S = O.

Proof. By (2),

D'S "r {Tt- ErE) + (7;'E - E'-F)

= (F'F - EE) (F'E - E'F)

=0+0. QED

THEOREM 1. There exists a block reflector H such that HE = F if and only if
F satisfies (2).

Proof. Necessity is clear: equation (2a) follows from the orthogonality of H,
while (2b) is obvious from the symmetry of H.

To show sufficiency we shall prove that H(D)E =P. Since E = I(S - D), we
have

H(D)E = [H(D)S - H(D)D],

= [S +D] (using Lemmas and 2)

= F. QED

Clearly if F satisfies (2) then -F does too. Furthermore, H(S)E = -T. If F
and E satisfy (2) we shall say that F is a mirror image of E.

The concept of a block reflector, the necessary and sufficient conditions, and
a solution to the standard task for the case n = 2 were given by Tang Ling in an
unpublished manuscript 1101.

2.3.1. Representing H. It may not be advisable to represent H by E, F,
and W as above. This form is very attractive if E must be preserved or when E is

4



sparse. On the other hand, when E has rank r < n. then it saves storage to find
an m x r matrix G such that H = I -- GG' , and G1 G - 2I. (We later show that
this is possible). Storage of G requires mr words, as opposed to mn + n2 for Z and
W, mn + 2n2 for E,F, and W, and 2mn for the W Y representation of Bischof and
Van Loan. Computing Hz for a vector z costs 2mr flops (I flop is one multiply and
one add) compared with 2rnn + n2 for the Z, W representation. An algorithm for
computing G is given in §3.2.

2.4. The form of F. F is far from unique, even when E has full rank
n. If El = 0 then the symmetry condition is vacuous and we may choose any F
satisfying the isometry condition FtF = EtE. At the other extreme, when El is
invertible, then F must have the form F -- ME with M symmetric. Now the
isometry condition requires

M' - E-'(E'E)E-l-

There are 2* solutions, namely M - V diag(±VlXT, ±/.-2,.- -, ±:V/X'\)VI where

Ej t(E tE)Ej 1 = V diag(,\i,.--. \,)V t

is the spectral factorization. Note that there are 2* different solutions for
every spectral factorization of E-(E t E)E-1 . And with repeated eigenvalues there
are infinitely many such factorizations.

The two "extreme" solutions are F = ± [El'(EtE)Ej1]" E,, where A1/ 2 is
the positive definite square root of A.

Example. Let

where V1 = V- 1 ; i.e., V is orthogonal. Then E-'(EE)ET' = VVI = 1. Thus
we may take M to be any symmetric orthogonal matrix (M 2 = I); in particular,
M = I will do. Then F = MV, and

HE-( 0 ")(D=(OF
2.4.1. The general case. Let E, = PEQt with Pp = QQ =I,,E

positive definite and diagonal, rl < n. This is the "short" SVD of El, where
r= rank(E,). The symmetry condition (2b) requires.that

QEP'F = symmetric.

The general solution for F is

F = (P,iP) A I M I)(0 (Q )t

5



where P, Q E R"x(*"t) make (P,P) and (Q,Q) orthogonal. M11 must be sym-
metric, but M 21 and M 22 are free.

The isometry condition (2a) yields

( M 22 M)M21 M22 ) = ( 0 1  0)Q)~E(, V 1)

For each choice of P and Q we can find M,, M21 , and .122 such that this equation

holds. The solutions are not unique. We solve

(4a) MQ2M22 = 1'E'EQ ,

(-1b) 44M2 M2 1 = QtEtEQE - I,

(4c) M2 = E-'(EQ)'(EQ)E-' - M21M 21.

Even when M22 is singular, (4b) is consistent. Nevertheless, the system (4b) may
be ill conditioned, so we do not propose to use (4) in computations.

2.5. Is H unique?

Suppose F satisfies the isometry and symmetry conditions (2). We have shown
that the choice Z = D provides a block reflector H such that HE = F. Is this the
only such H(Z)? The answer depends on the rank of D and the rank of S in (3)
above.

THEOREM 2. Let F satisfy (2). Let H = H(Z). The conditions

(5a) R(D) R(Z)

(Sb) R(Z) I R(S), i.e., Z'S = 0

are necessary and sufficient for H(Z)E to be equal to 7.
Proof. Recall that E = (S - D). If Z satisfies (5) then, as in the proof of

Theorem 1,

H(Z)E ! (HS - HD)

! (S+D)
2

by Lemmas 1 and 2.

On the other hand, if HE =7, then

7= E- ZWZ1E,



so that

D = -ZWZ'E

= Z( .WZ'E)

which implies (5a). Now that (5a) is established, we may use it to prove that (Sb)
holds. A consequence of (5a) is that H(Z)D - -D. Rewriting this relation yields

ZWZ tD = 2D.

.Using this equation we obtain

F=HE

= E - 1ZWZt (S - D)
2

= E + D -ZWZt $
21

=F - -ZWZ tS.
2

So ZWZtS = 0. Since, as we noted earlier, IZWZt is the orthogonal projector on
R(Z) , the columns of S are orthogonal to those of Z. This implies (5b). QED

Now suppose that H(Z)E =1. By Theorem 1, F satisfies (2) and by Theorem
2, Z satisfies (5). Let us define

pz = rank(Z), PD = rank(D), ps = rank(S).

Since Z, D, and S belong to R " X" ,

(6a) pz < n; PD -< n; Ps :_ n.

* Further, by (5a)

(6b) PD <- PZ

and by (5b)

(6c) pz _ M- ps.

Since F satisfies (2), Lemma 2 applies, so that

(6d) PD + Ps < m.

(We could conclude (6d) from (6b) and (6c), but it is true independent of.the
existence of Z, as we have shown.)

Now we can say when H is unique.
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THEOREM 3. Let F be a mirror image of E. Then

1. if PD = n, then H(D) is the unique block reflector satisfying HE = F;

. if PD+PS = m, then H(D) is the unique block reflector satisfying HE = F;

S. if PD < min(n, m - pS), then H is not unique.

Proof. Suppose H(Z)E = 1. If PD = n, then it is clear from (5a) and (6a)
that R(Z) = R(D), so H(Z) H(D) is the unique block reflector that reverses
R(D). Similarly, if PD + PS = m, then by (5a), (5b), (6b) and (6c), we must have
R(Z) = R(D), and again H(Z) = H(D) is the unique block reflector that reverses
R(D). Finally, if PD < min(n,m - Ps), we may choose any matrix Z C R"n'
whose range contains R(D) and is orthogonal to R(S). By our assumption, there
exist such Z of rank PDPD + 1,... ,min(n,m - ps). QED

COROLLARY. If E 2 has rank n, then H is unique.

Proof. Since

D= (F-E2)

it follows that n > rank(D) _> rank(E 2 ) = n. QED

In the case of Householder transformations (n = 1), the condition of the corol-
lary is satisfied unless E 2 = 0, in which case the standard task is not much of
a task at all! Thus, like the symmetry condition (2b), the possibility of genuine
nonuniqueness of the reflector H only appears in the multidimensional case.

Ezample.. Let

The three matrices 10)1-1)

all satisfy the conditions (2). With Fo, PD = 0 and ps = 2 and we have 0 < pz < 1.
We may choose

H= [O1 0].
Ho 0 10

0 0 ±1

With F, we have PD = 1 and ps = 1 and 1 < PZ < 2. We may choose

-1
0 0 11

With F2 we have PD = 2 and ps 0 and.2 < pZ :< 2. We must choose

H2(0 -1 0
0 0



This example shows that nonuniqueness of F is possible anCd that uniqueness
of H is possible even with singular E2.

For a contrasting example, let

0 1 [ '10 1

E= 0 F= 000].10 1 000

Then PD = 2, ps = 2. aiJ 2 < PZ < 2. Thus H = H(D) is unique, even though E
is rank-deficient.

2.6. The angle between R(E) and R ([0) In this section we shall

rederive many of our results using the operator angle between R(E) and R Io

For a complete discussion of the angle between subspaces see Davis and Kahan
[3]. This rederivation gives us a new view of the block reflector that allows some
geometric insight not available otherwise. It also leads to some algorithms that
would not be discovered from the algebraic perspective of the earlier sections.

Let r M rank(E). Let the colunms of P E Rrnsx be an orthonormal basis for
R(E). We discuss the problem of finding a block reflector H that performs the
standard task for P rather than E; since they have the same range, this H also
performs the standard task for E: If E = PT and H is a block reflector such that

HP = 0 Q square, then HE ] Thus, for ,ie moment, we work with P

rather than E.

Let

P =[Pi1LP2
where P is square. Let

P = QIM

be a polar decomposition of P1. The factor M, is the symmetric, nonnegative
definite square root of PfP, and is unique. The other factor, Q1, is orthogonal
and is unique only if P is nonsingular. Since P has orthonormal columns, the
eigenvalues of M, all lie in [0,11 (see [6, p. 22]). Higham [71 discusses the polar
decomposition and gives an efficient algorithm for computing it.

It is simple to show that Q1 is a mirror image of P. In fact, a version of the
converse is also true. If Q is any mirror image of P then

P =QM

is a factorization of P into an orthogonal-symmetric product. (The choice is in the
signs of the eigenvalues of M, as it was in §2.4). For the moment we choose to work
with the polar factorization.
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Define ( We now write

M, = cos 20;

where the angle e is defined by

0 = Vdiag(01,---,0,)Vt ,

where

0<01 < ... < !- , :S -.
4

The eigenvectors of M, are the columns of V and its eigenvalues are 1 > cos 20, >
> . cos20, > O.

We also factor

(7) P2 = Q2M2

where M 2 = (I - M2) 1 /2 = sin20 is symmetric, nonnegative definite and Q2 E
R' -rx'. The form of Q2 will be clarified below. We may choose Q2 so that

(8) Q1Q 2(sin 0) = sin 0.

It is easy to prove this by using the C-S decomposition of P [131.
From this new viewpoint we obtain several new formulas. First

PI = Q, MI Q cos 20, P2 = Q2 M 2 = Q2 sin 2;

hence

(9) (I + M)'"- v2cosG, (I- M)" 12 -= vi sin 0.

Next,

(10) s=(Qz+z) C=5 (22(QQzcsoe)2 co)2 2Q AQ2 sin e cs

and

D(1) D=('>j If)= (2Qzsine) -2 Q sine sine.
-- P / = -Q 2cose

Thus,

(12) lS'S= 2cos2O

2

10



and

(13) !DD = 2sin 2 e.
2

The definition of the angles {,} insures that cos 2 e is both nonsingular and well
conditioned. Define

(14) H+ = I - G+G'4

where

Msin O]

By (10) and (12), since (cos 1O) (cos 2 O) ',

H(S) = H.

Note the analogy with the case n = I where, if 20 is the angle between e (that
is, E) and the el-axis, then H = I 2v+v+, where v+ = (cosf,sin9)t.

We now consider H(D). It is important to be able to construct H(D) since in
some instances it is what we want. In particular, if E (orthoona then H(D)
produces a small change to E.

Now note that D is not necessarily of full rank. In fact

PD Z] rank(D)
= rank(D'D)

= rank(sin e)
= rank(sin 2e)

= rank(M2 )

= rank(P)
_5 min(r, m - r)- .

If any of the a singular values of P2 is zero then PD < a and the angles 01--.
= 0. In this case the analog to (14), namely

(16) IL = I - G - _G'

where

(17) G_ f v2 (Q, si e)

fails in the sense that H(D) 6 H. For it is clear that rank(G_) = a, so that H_
reverses an a-dimensional subspace; but H(D) reverses only R(D), which is just
P-dimensiOna. Since, by assumption, PD < a, the two block reflectors must differ.
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By Theorem 3, however, H(D) is not unique. We may therefore ask whether
H- satisfies HP = Q1 despite the fact that it is not H(D). According to Theorem
2, it does if

(18) R(D) c_ R(G)

and

(19) G .= o.

But (18) follows from the characterization (11) of D and the definition (17) of C..
The orthogonality (19) follows from property (8) of Q2.

When D is rank deficient there may be other choices as well. In fact, if PD <
s - 1 then there are block reflectors that reflect P into i7 and reverse subspaces
of dimension greater than PD and less than a. The two that we have exhibited are
the extreme cases: H(D) reverses the smallest possible subspace IR(D)], while H
reverses the largest IR(S)1Ll.

2.6.1. Other choices for F. Were we to take any other orthogonal-
symmetric factorization (QIMI with M, indefinite) of Pi, we could still construct
block reflectors H±j by (14) and (16). Now, in general, neither H(S) = H+ nor
H(D) = H-. But nevertheless, HjP = :'Qj.

2.6.2. Other representations for 1. When m = 2r we may write

H =:F(,Q2)[ cos20 sin20 (

sin2e -co2.] (Q1 e Q)t

in exact analogy to the elementary case. In general, m $ 2r and we have that

0 0 [ cos 2e sin 20 1 Q)t
H.= (0 IQ2Q42 F(Q Q2)[sin2e -cos2ej(Q)

3. Applications and computation.

3.1. Applications.

1. Optimal error bounds. Let the columns of U be approximate eigenvectors for
some symmetric A E R"'. Let A = diag (1, .-. , ,) be approximate eigenvalues.
Let X := AU - UA be a residual matrix. Next map X into its mirror image ()
by a suitable block reflector H. Then form the auxiliary symmetric matrix

where V is at our disposal.

By choosing suitable V and computing the eigenvalues of T(V) error bounds
may be obtained on the approximate values 01,'", -DO. In several important cases

12



V can be chosen so that the bounds are optimal for the given information. See
ill, §§10-4 - 10-91 for more details.

The point of interest here is that the residual matrix X is likely to have lower
rank than is revealed by its columns alone.

2. Block Hessenberg form. It is possible to reduce a matrix B E R"nXr to block
upper Hessenberg form by explicit orthogonal similarity transformations

feI C1  2 C13  C14 CIS'
lC 21 -C22  C23 C24 C25

B -+C =HtBH= 0 C32  C33 C34 C35 .
0 0 C43  C44  C45]

0 0 0 C54  C55

Here H represents a product of three block reflectors, H - HI H 2 H3. The first step
is typical. We seek HI so that

B21  Ica,.

B4 01

Bs1  0J

In tnese circumstances we expect full rank to be maintained. It may not pay to try
and represent H1 =In - GI G where Gi E R " since usually r = n.

Block QR factorizations can be computed in a similar manner, by applying a
sequence of block reflectors to a matrix [2,4].

3.2. Stable computation of the block reflector. Recall that E E Rn"'
is given and we seek a block reflector H = H(Z) such that HE = 7 = ( F ) for some
n x n matrix F. In this section we shall describe four elegant and stable constructions
for mirror images F of E and of matrices G E RX " "such that GAG = 21, and the

block reflector H = I - GG maps between R(E) and R ([I]). One of these,

Algorithm 2, appears in a slightly diffarent form in 14].
As in §2.6, we suppose we have a matrix P E Rrnxv such that R(E) C R(P)

and P has orthonormal columns. Thus P tP= 1,, and E = PT for some T E R " .

We can easily find T since

T =P t E.

Let P = [P 2a with P square. Let P1 = QIMI be a polar decomposition of

P1. The orthogonal polar factor Q, is a mirror image of P. With this choice,

(20) S iP

Then as we have seen, H = H(S) satisfies HP = - , which is our objective.

13



It remains only to find a convenient representation for H. The one given by
(14)-(15) is a possibility. We shall compute the necessary matrices cos E and sin e
using (9). In the computation of sin e, however, it is possible that cancellation of
nearly equal elements on the diagonal can spoil the formation of I - MI. Following
!il, p. 911 in the one-dimensional case, we may use the relation

I- M (I + M,)-(I - MI)

= (I + MI)-(I - PtP)
= (1 + MI)-'(P I)

to construct I - M, without any matrix subtraction.

This leads to the following algorithm. Recall that M, = cos 20 and M 2

sin 20.

ALGORITHM 1. Compute F E R XR and G, R " 'x , r < n, such that
HE = F, where H+ - I - G+G+.

1. Find P E Rn xr and T E R "X" such that R(E) _ R(P), ptP = I, and
PT = E;

2. IQ,,M,I-= polar(P,) and IQ2,M2] := polar(P2), where P (I)

3. F:= QIT);

4. cosO := (I + MI)112 and sine ((I r Mi)--'PP 2)'1/;

5. G+.:= QI co J5. + : LM a ine ]_"

In Step 1, the required orthonormal matrix P may be obtained using a QR-
factorization of E, with column pivoting if we wish r to be minimal and R(E) =

R(P).
There are no additional difficulties in computing G- and H- according to

(16)-(17). Only Step 5 of Algorithm I needs to be replaced, by
Sa.r G- QIsineI
5a. G :=I -Q= co O J

We give the resulting algorithm the name *Algorithm la.

The two polar decompostions and two square roots add to the cost of Algorithm
1. It may well be that the cost of applying H to some large matrix so dominates the
cost of contructing it that this is insignificant. We shall try, nevertheless, to reduce
this initial coat by seeking alternatives to the representation given by (14)-(1"5j. We
therefore seek a new representation of H as I - G+(G'+) where G+ E R " x. By
(20), or equally well by (9) and (13),

ISS = I[QI + PP + 2Q'Pi]
(21) =I#M1.

=l+Ml •

14



Now let R be the upper triangular Cholesky factor of I + MI. Since the
eigenvalues of I + M, are all in [1, 2;, both R and 1 -4- M, are extremely well
conditioned. Define

Ip2R.-1

Then

41  [Q,(I + M)] R'_

(22) = [Q1 + P1 R -1

= SR - '

Thus, by (21) and (22),

H(S) = I- s(Is's)--s'
= I - SR-lR-tS'

Thus we have a second algorithm.

ALGORITHM 2. Compute F E RIXS and G+ E R"x', r < n, such that
HE =F, whre H - I -G (G'+)'.

1. Find P E R mX? and T E R"X4 such that R(E) 9 R(P),P t P = I, and
PT = E;

2. IQI,Mil := polar(PI) where P A

3.' F:= QIT

4. R := cholesky(J + MI);

6. Q1 R'

Thus we may represent H without having to construct sin e or cos 0. It is
worthwhile asking whether we can do the same for H-. We seek G'_ such that
H_ . = I - Gl_(GE_)t. We may attempt to repeat the derivation above, substituting
-Q, for Q1. But there is a cause for concern. The Cholesky factor of I - M, and
its inverse may not exist or, worse, may be ill conditioned.

Instead we proceed as follows. Define P.- IGG _ where G- is given by (17).
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Then H- = I - 2P_. Furthermore, using (9),

2P (2Qsin )(Q, sinO )
2P 2-Q2cOos \-Q2Co6O

QI sin 2e 02e)- , i E
-(... co( : e) ) (2cos e e-'( sneQ2(2 OS2 9 ) ( Q2 (2 cos 2 e).

S(QIM 2R-' Q 1M 2 R'
-Q 2R9 -Q2Rt /
#- (G_( ) t

To summarize, we have

ALGORITHM 3. Compute F E R1X" and G1 E R 'nA , r < n, such that
HE F, uthcre H- I - , '

1. Find P * R"x ' and T E Rxn such that R(E) C R(P),P t P 1 l, and
PT = E;

2. 'IQI,M 1 :-= polar(P) and [Q2,M 2 ]:- polar(P 2 ) whereP= ( );

3. F:= 0 1,tQIT

4. R:= cholesky(I + MI);

[ QIM2R-']5. _ : [ Q2RI I.

Therefore we may again stably construct a representation of H- without resort
to sin e and cos 0. But in this case we must compute a polar decomposition (7) of
P2.

Thus, the essential difference between the constructions of G* and G' is that
for G± one uses two matrix square roots, to compute cosO = -,(I + M) 1/2 and

sinO = [(1 + M,)- 1 (Q - M2)] 11 2; while for G( one must use a Cholesky factor-
ization of I + MI. Furthermore, one may construct G+ without ever computing the
factors Q2 and M 2 of P2, which is a distinct advantage.

Still other representations for H* are possible. For example,

1. Compute P = QIMI and V -(I+M)-';

2. H+ ... (P2QQ I PP 0 "

3.2.1. Efficiency. Algorithms that are couched in terms of modules such as
the Bask Linear Algebrta Subprogram [91, matrix-vector products, and matrix-
matrix products tend to perform well on modern vector and parallel computers
!51. In fact, very high speed systolic array devices can be used to implement these
operations. One advantage of block reflectors is that they can be computed using
matrix multiplication for most of the work, and they can be applied using matrix
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multiplication for all of the work. Bischof and Van Loan !I point out that algorithms
"rich in matrix multiplication" are attractive for these reasons. Matrix multiply
(n x n) also has the extremely important property that there is substantial reuse
of data - 0(n 2) data and 0(n 3) arithmetic. It is therefore possible to support a
processor whose speed is 0(n) times greater than the bandwidth of the memory.

In Algorithm 2 above, computation of a block reflector requires

[i] Computation of an orthonormal matrix P such that E = PT;

lii] Polar decomposition of an n x n matrix;

liii] Cholesky factorization of an n x n matrix and inversion of the Cholesky factor;

[iv] Matrix multiplication.

As applied to computation of the block reflector, the operation counts of items
jil and liv] are 0(mn2 ) and those of items [ii] and Iiiii are 0(n 3 ). We are especially
interested in the case m > n.

The computation of P (item [i) could be done using a QR factorization (with
column pivoting if we wish to make the number of columns of P as small as possible).
The implementation suggested by Bischof and Van Loan, which is rich in matrix
multiply, could be used. In a later paper, we shall give another algorithm for item
ji that is rich in matrix multiply.

Item Iiii] is not matrix multiply. but it is very inexpensive compared to the
other items.

The polar decomposition, item Iii;, can also be computed with a procedure
dominated by matrix multiply. We start with Higham's method for the polar de-
composition of a given nonsingular matrix A. In brief, this algorithm constructs a
sequence of matrices (Bj) where

Bo=A

and

Bi+, = !('yjBj + !B-T)

and the scalars -yj are chosen by the algorithm to accelerate convergence. The
sequence (Bi) converges quadratically to the orthogonal polar factor. Higham has
shown that 5-6 iterations are typically needed and that the computation time is
somewhat less than that for the usual SVD-based method (71.

At each step, Bi' is needed; its computation dominates, only 0(n 2 ) other
work is done. For the first step, the inverse can be computed in a conventional
way. For all the subsequent iterations of Higham's method, we take advantage of
the fact that B 1 is a good a priori approximation to Bi-', which gets better with
increasing i due to the rapid convergence of {Bj. In fact,

IIB,+ - BII = 0(2-2).
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It follows, since B, - Q is orthogonal and hence has condition number unity that

11B71 - B- '11 =-O(2- 21)

Therefore we use Schulz's iterative method 1121 as an inner iteration to compute
Bi-. This matrix iteration produces a sequence {Ak} via

Ak+J '" Ak + (I - AkB,)Ak. k =- 0, 1,...

where

A0 = Bi2 1 .

The sequence {At} converges to B - 1 quadratically.

Note that this method is entirely matrix multiply-add. Experiments have
shown that five iterations suffice for convergence of Higham's method. The-question
is, how many iterations of Schulz's method are required. This depends on i. Here
are typical results:

Iteration i Number of in ner iteations k
1 6
2 5
3 3
4 2
5 1

Thus, about 17 Schulz iterations, or 34 matrix multiplications, are needed for
the polar factorization. Were the matrix inverses to be computed directly, five such
inverses would have been necessary. Since matrix inversion requires as many floating
point operations as matrix multiplication (2n 3 ), the matrix multiply oriented version
of the algorithm is more efficient if matrix multiply can be done at a rate 34/5 -
6.8 times faster than matrix inversion.

The SVD can also be used to compute a polar factorization. Higham has
shown that his algorithm is somewhat less costly, even under the usual model of
computational cost.

4. Experiments. Ten very ill-conditioned 12 x 8 matrices E were generated
by the following procedure. Random matrices U, and V, were chosen and their
columns orthogonalized to produce orthogonal matrices U and V. Seven random
singular values were obtained by sampling the random variable

a :--= 1
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where = 2-52 .was the machine precision and u was uniformly distributed in [0,
1]; the other singular value was taken to be 1. Finally we computed

E = UEVt,

where E = diag(a,-. ,as). We then computed a 12 x r matrix P with orthonormal
columns, and rank(E) < r < 8. Algorithm 2 was used to find F and G"+. All com-
putations were performed on an IBM PC/AT using PC MATLAB, which employs
IEEE-standard double precision arithmetic, with 15 decimal-digit precision.

Let

H =I - + G4)' NJ H, ER8 x1 2 .

In each case we computed four measures of error.

1. (nonorthogonality): 11112 - HtH1I;

2. (anisometry): IFt F- EtE;

3. (correctness of F): IIHtE - FI;

4. (correctness of H): IIH2EII.
The matrix 2-norm was used. The rank of P varied from 3 to 7. The condition

number of E was always at least 2.7 x 1015. All the error measures were in the
interval I0,.7 x 10-14).

Isomorphic experiments were performed using G _ (computed using Algorithm
3), G+ (computed using Algorithm 1), and G_ (computed using Algorithm la),
with these results:

0. Errors using G+ were < .7 x 10-14;

1. Errors using GC_ were !< .7 x 10-14-

2. Errors using G+ were 5 .9 x 10-14;

3. Errors using G_ were < 3.0 x 10 - 14 .
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